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A B S T R A C T

Unmanned aircraft systems (UAS) are susceptible to malicious attacks originated by intelligent adversaries,

and the actuators constitute one of the critical attack surfaces. In this paper, the problem of detecting and

mitigating attacks on the actuators of a small UAS is addressed. Three possible solutions of differing complexity

and effectiveness are proposed to address the problem. The first method involves an active detection strategy,

whereby carefully designed excitation signals are superimposed on the control commands to increase the

detectability of the attack. In the second method, an unknown input observer is designed, which in addition

to detecting the attack also estimates the magnitude of the attack. The third method entails designing an

actuator system that makes use of variable frequency pulse-width modulated signals to improve the resilience of

the actuator against malicious attacks. The effectiveness of the proposed methods is demonstrated using flight

experiments and realistic MATLAB simulations that incorporate exogenous disturbances, such as steady winds,
atmospheric turbulence, and measurement noise.

1. Introduction

Small unmanned aircraft systems (sUAS) are increasingly employed

in diverse applications, such as aerial photography (Colomina & Molina,

2014; Watts and Perry et al., 2010), infrastructure inspection (Mon-

tambault, Beaudry, Toussaint, & Pouliot, 2010; Mulero-Pázmány, Ne-

gro, & Ferrer, 2013), precision agriculture (Zhang & Kovacs, 2012),

emergency management (Merino, Caballero, Martínez-de Dios, Maza, &

Ollero, 2012), and package transport (Hoareau, Liebenberg, Musial, &

Whitman, 2017). With the rising demand for integration of sUAS into the

national airspace (Federal Aviation Administration, 2017), the need to

address the vulnerabilities of sUAS to security threats is becoming more

urgent. Small unmanned aircraft systems, especially the ones used in

civilian applications, are acutely susceptible to security threats because

of the public availability of information related to their subsystems and

architecture (Kim, Wampler, Goppert, & Hwang, 2012). This informa-

tion enables adversaries to launch sophisticated attacks, such as stealthy

data integrity attacks, which are much more effective than passive at-

tacks, such as eavesdropping. The publicly available information is also

being used by researchers to demonstrate the vulnerabilities of existing

unmanned aircraft systems by successfully compromising the navigation

sensors (Kerns, Shepard, Bhatti, & Humphreys, 2014), ground control

station commands and telemetry data (Yoon, Liu, Hovakimyan, & Sha,

2017), and the gyroscopic sensors (Son and Shin et al., 2015).

A variety of approaches have been proposed in the literature to

ensure the safety and security of sUAS against various types of cyber–

physical attacks, see Birnbaum and Dolgikh et al. (2016), Mitchell and
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Chen (2014), Muniraj and Farhood (2017) and Yoon et al. (2017).

However, almost all of these approaches only address security threats

to the sensors, the communication link, or the autopilot system. Little

attention has been devoted to address the security vulnerabilities of the

actuators of an sUAS.While the approaches studied herein apply to sUAS

in general, the focus of the presentation will be on fixed-wing sUAS, as

the physical platform used in the experimental validation is a fixed-

wing radio-controlled (R/C) aircraft. The actuators of a typical fixed-

wing sUAS consist of servo motors and a DC motor. The servo motors

are used to actuate the three control surfaces, namely, the elevator,

aileron, and rudder, and the DC motor controls the propeller. The inputs

to the servo motors and the DC motor are in the form of pulse-width

modulated (PWM) signals, which are digital signals that encode analog

values. Since the actuators do not interact with any system external to

the sUAS, they were considered to be less vulnerable to cyber–physical

attacks than the other subsystems in the sUAS, such as the sensors,

the communication link, and the autopilot. However, just as gyroscopic

sensors, which are equally isolated from external systems, have been

shown in Son et al. (2015) to be susceptible to attacks using acoustic

signals, actuators too can be attacked by altering the PWM signals using

intentional electromagnetic interference (Selvaraj and Dayanıklı et al.,

2018). Since civilian sUAS do not in general have redundant actuators,

an attack on even one of the actuators may result in loss of control of the

sUAS. In such a scenario, it is essential to have detection and mitigation

schemes in place to overcome the adverse effects of actuator attacks.
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A considerable body of work exists on actuator fault detection and

mitigation for aircraft (Bateman, Noura, & Ouladsine, 2011; Ducard &

Geering, 2008; Heredia, Ollero, Bejar, & Mahtani, 2008; Yu & Jiang,

2015; Zhang & Jiang, 2008). The main assumption in these works is

that the fault mode of the actuator is assumed to lie in a finite set which

is known a priori, and the different fault detection algorithms determine

the fault mode using knowledge about the model of the aircraft. In

the case of actuator attacks, the type of attack is not known a priori

and because of this crucial difference, most of the available approaches

cannot be used for detecting actuator attacks. There is another line

of research that addresses the problem of actuator attack detection

for systems modeled using linear differential equations. In Pasqualetti,

Dörfler, and Bullo (2013), the authors consider different types of attacks,

including sensor and actuator attacks, on systems defined by linear

descriptor models and propose monitors to detect such attacks. The

authors in Fawzi, Tabuada, and Diggavi (2014) consider the problem of

state estimation for systems described by linear time-invariant models,

where a subset of the sensors and actuators are under attack. The

authors in Teixeira, Shames, Sandberg, and Johansson (2015) use a fault

detection filter to detect threats such as denial-of-service and replay

attacks on linear time-invariant systems. Since the dynamics of sUAS

are highly nonlinear and their operational environment is uncertain,

the solutions proposed in these works cannot be applied for detecting

actuator attacks on sUAS. The present work is aimed at addressing the

specific challenges that lie in detecting and mitigating actuator attacks

for sUAS.

In this work, two different approaches are considered in addressing

the problem. The first approach, called the software approach, involves

developing algorithms for detection of actuator attacks and does not

require any hardware modifications. However, a separate mitigation

strategy is required to ensure safe operation of the sUAS in the event of

an attack. Under this approach, two methods are proposed: the active

detection method and the estimation-based detection method. In the

active detection method, judiciously designed excitation signals are

superimposed on the control commands to increase the detectability of

the actuator attack. The estimation-based detection method involves the

use of an unknown input observer, which in addition to detecting the

actuator attack also estimates the magnitude of the attack. The second

approach, called the resilient hardware approach, focuses on identifying

the vulnerabilities of the existing actuators and using that information

to design actuators that are resilient to malicious attacks. The proposed

method in this case entails designing an actuator that uses variable fre-

quency pulse-width modulated signals to improve its resilience against

actuator attacks. Thus, the resilient hardware approach does not require

a separate mitigation strategy.

The paper is organized as follows. Section 2 presents background

information on the operation and security vulnerabilities of servo

motors used in sUAS. A brief description of the sUAS platform used in the

flight tests is provided in Section 3. In Section 4, the two methods under

the software approach are presented along with simulation and flight

test results. The resilient hardware approach and a detailed analysis

of its effectiveness are presented in Section 5. Finally, conclusions and

some topics of future work are discussed in Section 6.

2. Servo motors used in sUAS

This section provides a brief overview of the operation and security

vulnerabilities of a typical servo motor used as an actuator in an sUAS.

2.1. Servo motor operation

A servo motor used in an sUAS consists of six different components,

namely, a DC motor, a control horn, a gear reduction system, a poten-

tiometer, a servo plug, and a microprocessor, as shown in Fig. 1. The

DC motor is connected to the control horn through the gear reduction

system, whose purpose is to increase the torque. The potentiometer

is attached to the servo shaft and provides measurement of the shaft

position to the internal control circuit. Based on the incoming reference

signal and the signal received from the potentiometer, the internal

control circuit of the microprocessor controls the speed of the DC motor.

The servo plug has three wires, out of which one wire provides positive

voltage to the servo typically in the range of 4.8V to 6V, the second wire
serves as the ground, and the third wire provides the reference signal

to the servo. The rotational range of most servos is limited to ±90 deg.
Depending on the manner in which the incoming reference signal is

processed, the servo motors are classified as either analog servos or

digital servos. In an analog servo, the power sent to the DC motor is

in the form of constant voltage low frequency pulses with a frequency

of 50 pulses∕s, and the length of each pulse is varied until full power is
applied to the motor. When the desired servo position is reached and

no external force is applied on the control horn, no power is sent to the

DC motor, thereby ensuring that the control horn is not continuously

rotating. As a result of using low frequency voltage pulses, analog servos

tend to respond sluggishly to commands and have a large deadband.

Digital servos, which operate using high frequency voltage pulses of the

order of 300 pulses∕s, overcome many of the limitations of analog servos.
Since the power sent to the motor is turned on/off more frequently,

digital servos respond faster to the commands and also have a lower

deadband. Analog servos are increasingly being replaced by digital ones

in unmanned aircraft systems.

The input to the servo motor is a constant frequency pulse-width

modulated (PWM) signal with a frequency of 50 pulses∕s. A PWM signal

is essentially a rectangular pulse train, where the signal can be either

in a high corresponding to a voltage of 5V or a low corresponding to a

voltage of 0V. However, in many servos a threshold voltage of 2.8V is

used to account for noise in the signal. If the voltage of the signal is less

than the threshold voltage, then it is registered as a low. By modulating

the time the signal is in a high, the PWM signal is able to encode analog

values. A rising edge is the time at which the voltage transitions from a

low to a high, and a falling edge is defined as the time when the voltage

transitions from a high to a low. The difference between the falling

edge and the rising edge within a time period is called the pulse width.

Given an analog reference signal 𝑠𝑟(𝑡), the corresponding PWM signal

𝑠𝑝(𝑡) can be mathematically written as 𝑠𝑝(𝑡) = max(sgn(𝑠𝑟(𝑡) − 𝑠𝑐(𝑡)), 0),
where 𝑠𝑐 (𝑡) is a carrier signal, and sgn and max denote the signum

function and the maximum function, respectively. Based on the type

of the carrier signal used, PWM signals are classified as either leading-

edge modulated signals, trailing-edge modulated signals, or double-edge

modulated signals (Sun, 2012). The PWM signals used to control the

servos of an sUAS fall under the category of trailing-edge modulated

signals, where the rising edge of the signal occurs at fixed instants of

time and the trailing edge is modulated as the reference signal varies.

A sawtooth signal with a time period of 20ms is used as the carrier
signal to generate a trailing-edge modulated PWM signal with a pulse

frequency of 50 pulses∕s. The angular position of the servo control horn is
determined by the pulse width, where pulse widths of 1.9ms and 1.1ms
correspond to the two extreme angular positions of the servo and a pulse

width of 1.5ms corresponds to the nominal servo position.

2.2. Security vulnerabilities of servo motors

The servo plug provides an easy attack surface because of its

susceptibility to electromagnetic interference. The authors in Selvaraj

et al. (2018) exploited this attack surface to modify the PWM signal

using intentional electromagnetic interference. The attacker circuit in

that case consisted of a waveform generator, a buffer amplifier, and a

solenoid or an antenna. The attacker’s objective is to design a waveform

such that the antenna generates magnetic fields that induce time-varying

voltages in the servo plug. The effect of the attack is to cause a negative

voltage in the signal wire, thereby modifying the trailing edge of the

pulse. For instance, if the attacker manages to induce a negative voltage

of 2.2V in the signal wire of the servo plug, then the trailing edge of
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Fig. 1. A disassembled Futaba S3152 servo.

Fig. 2. The sUAS platform used in the flight tests.

the pulse can be modified by varying the phase difference between the

induced signal and the original PWM signal. The attacker only needs to

induce a negative voltage of 2.2V and not 5V because of the tolerance

voltage of 2.8V set in the servo. One simple solution to prevent such

attacks would be to lower the tolerance voltage so that the attacker

is forced to expend more energy to induce a larger negative voltage.

However, the downside to this simple solution of lowering the tolerance

voltage is that more noise is now allowed into the system, thereby

reducing the accuracy and reliability of the servo.

Based on the above model, the attacked signal, denoted by 𝑢̄(𝑡) and
expressed in milliseconds, is related to the original signal 𝑢(𝑡) through
the following relation:

𝑢̄(𝑡) = 𝑢(𝑡) + 𝑏(𝑡), where (−𝑢(𝑡) + 1.1) ≤ 𝑏(𝑡) ≤ 0. (1)

Under the above attack model, the attacker can only reduce the magni-

tude of the control signal 𝑢(𝑡) and not increase it. In order for the attack
to be successful and effective, the attacker must possess knowledge

about the pulse frequency of the PWM signal and also maintain a small

separation distance between the antenna and the servo plug. The attack

model described here is based on Selvaraj et al. (2018), where a realistic

and practical actuator attack is discussed. The methods proposed in

this work are not restricted to this attack model only, but are rather

applicable to more general attacks, as will be seen later.

3. sUAS platform

This section provides a brief description of the sUAS platform used

in the flight tests. A Senior Telemaster Plus fixed-wing radio-controlled

aircraft from Hobby Express (2018) is the aerial platform of the sUAS.

The aircraft has an electric-motor driven propeller and three control

surfaces, namely, the elevator, aileron, and rudder. The control surfaces

are actuated by Futaba S3152 digital servos, and the electric motor

driving the propeller is controlled by a Jeti Advance 70 Pro Opto

brushless electronic speed controller. The mass of the sUAS is 5.71 kg.
The wingspan and the mean aerodynamic chord of the aircraft are 2.39m
and 0.3594m, respectively.

The sUAS is controlled by a fully programmable autopilot system

consisting of a 3DR Pixhawk (Pixhawk, 2018) and a Gumstix Overo

Fire (Gumstix, 2017). A customized version of the open-source ArduPilot

firmware is used in the Pixhawk. The Pixhawk contains a 168MHz,
32 bit Cortex M4 core processor with 256KB RAM. The Pixhawk

is used for basic input/output tasks and redundancy management in

the event of failures in the controller. The computational resources

of the Pixhawk are not adequate for handling more computationally

demanding algorithms, and so a Gumstix Overo Fire is used as the back-

end onboard computer to execute these tasks. The brain of the Gumstix

consists of a 600MHz TI-OMAP 3530 with ARM Cortex A8 processor.

The Gumstix uses a version of Linux called the Yocto project as the

operating system and provides sufficient computing power for running

computationally demanding algorithms in near-real-time. The detection

algorithms presented in this work and the path-following controllers

are coded in the Python programming language and executed on the

Gumstix. A serial interface is used as the interconnection between the

Pixhawk and the Gumstix.

The sUAS platform contains the following sensors: a MS5611 baro-

metric pressure sensor for altitude measurement, a 4525DO differential

pressure sensor for airspeed measurement, a U-blox NEO-7 GPS module

for position measurement, and an MPU 6000 inertial measurement unit

(IMU). While the pressure sensor and the IMU are mounted inside

the Pixhawk, the differential pressure sensor and the GPS module are

connected to the Pixhawk though the I2C and the serial interfaces,

respectively. Every 40ms, sensor data from the Pixhawk is sent to

the Gumstix and control commands from the Gumstix are sent to the

Pixhawk. The sUAS also transmits data to a ground control station

through an XBEE 900 Pro, point-to-multipoint radio modem. The sUAS

platform is shown in Fig. 2 with the important subsystems marked on

it.

4. Detection of actuator attacks using the software approach

This section presents the active detection method and the estimation-

based detection method. The description of each method is followed

by detailed analysis using nonlinear simulations and validation through

flight experiments. The merits and shortcomings of each method are

also discussed. The main difference between the two methods is that

the active detection method is not model dependent, whereas the

estimation-based detection method requires a mathematical model of

the sUAS. Although the active detection method does not explicitly

require a model of the sUAS, if available, a mathematical model, even a

low fidelity one, can be utilized in tuning the parameters of the resultant

watermarking-based detector; otherwise, the parameter tuning has to be

done based on flight test data.

4.1. Active detection method

The basic idea of the active detection method is inspired from

digital watermarking (Cox, Miller, & Bloom, 2002), which is a process

used to secure digital data. In digital watermarking, the sender of a

digital file merges the contents of the file with information related

to the file called a watermark; the receiver of the file then uses the

watermark to verify the authenticity of the digital file. In the active

detection method outlined here, the control commands sent to the

actuators act as the digital file and judiciously designed excitation

signals that are superimposed with the control commands act as the
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watermarks. Since sUAS do not have sensors to measure the actual

angular displacement of the control surfaces, other measurements from

the IMU that provide information about the actual control commands

applied to the control surfaces are analyzed. The watermarking-based

detector relies on the following observation: when the actuators are not

under attack, the intended effects of the watermarks must be observed

in the sensor measurements; a failure to observe the intended effects of

the watermarks is an indication of an attack on the actuators.

Since the excitation signals act as additional disturbances to the

system, it is important to ensure that their deleterious effects on

the performance of the sUAS are minimized while at the same time

increasing their effectiveness in detecting the actuator attacks. In this

regard, the excitation signals must be able to excite the aircraft dynamics

with minimum excursions in the position and attitude of the sUAS.

Ideally, the variations in position and attitude due to the excitation

signals must be indistinguishable from the response of the sUAS to

atmospheric disturbances so that it is not obvious to the attacker that an

active detection system is used. The design of the watermarking-based

detector is explained in the following paragraphs.

Design of watermarking signals

There are four watermarking signals associated with the four control

inputs. To minimize the time interval of excitation, all the watermarking

signals are simultaneously applied to the control commands. For the

watermarking-based detector to effectively isolate the actuator under

attack, it is important that the responses of the sUAS to the four

watermarking signals be decoupled. Multitone signals, which are sums

of harmonic signals and frequently used in frequency-domain system

identification of aircraft, are chosen as the watermarking signals. In

particular, a two-tone input consisting of a sum of harmonic sinusoids

with different phase lags is used. The advantage of using multitone

signals as the watermarks is that the signals can be designed to be or-

thogonal to each other, thereby ensuring that the sUAS responses to the

watermarking signals are decoupled. The design of the watermarking

signals essentially entails choosing the frequencies and the phase lags of

the constituent harmonic signals such that the energy content of each

watermarking signal is maximized while minimizing the amplitude of

the signal. To simplify the exposition, the following sets and variables

are defined.

Suppose there are 𝑁 sets of watermarking signals, for some integer

𝑁 > 0. Let𝐖𝑖 = {𝐮𝐸,𝑖,𝐮𝐴,𝑖,𝐮𝑅,𝑖,𝐮𝑇 ,𝑖} denote the 𝑖th set of watermarking
signals, where 𝐮𝐸,𝑖, 𝐮𝐴,𝑖, 𝐮𝑅,𝑖, and 𝐮𝑇 ,𝑖 designate vectors that represent
the watermarking signals corresponding to the elevator, aileron, rudder,

and throttle control inputs, respectively. Each of these vectors has 𝑚𝑖
entries, where each entry corresponds to the value of the signal at

a particular time instant. Let 𝑇𝑖 denote the time interval of the 𝑖th

watermarking signals, which is computed as 𝑇𝑖 = (𝑚𝑖 − 1)𝛥𝑡, where 𝛥𝑡
is the sampling period of the signals. Let𝐖 = {𝐖1,… ,𝐖𝑁} denote the
set consisting of the 𝑁 sets of watermarking signals. Every 𝑇𝑤 seconds,

for some judiciously chosen positive scalar 𝑇𝑤 > 𝑇𝑖, the watermarking-

based detector selects a set from 𝐖 at random and superimposes the

corresponding watermarking signals with the control commands from

the sUAS controller. By pseudorandomly changing the watermarking

signals, it is ensured that the attacker will not be able to predict the

future watermarks, thereby preventing any countermeasures from the

attacker. A monitoring interval is defined as a time interval of length

𝑇𝑤 seconds starting from the time when the watermarking signals are

injected. Since 𝑇𝑤 > 𝑇𝑖, the monitoring interval is larger than the time

interval of the watermarking signals and is chosen as such to completely

capture the responses of the sUAS to the watermarking signals. As some

of the dynamic modes of the sUAS are lightly damped, the effect of the

watermarking signals on sUAS outputs such as the linear and angular

accelerations persists beyond the duration of the watermarking signals,

thus necessitating a value of 𝑇𝑤 greater than 𝑇𝑖 to fully represent the

outcomes of applying these signals. A specific value for 𝑇𝑤 depends on

the sUAS platform among other factors, and further details on how this

value is chosen will be provided later in this subsection when evaluating

the method through simulations and experiments. The 𝑖th watermarking

signals are given by

𝐮𝑥,𝑖 =
[
𝑢𝑥,𝑖(0) 𝑢𝑥,𝑖(1) ⋯ 𝑢𝑥,𝑖(𝑚𝑖 − 1)

]𝑇
, for 𝑥 = 𝐸,𝐴,𝑅, 𝑇 ,

where, for 𝑗 = 0,… , 𝑚𝑖 − 1,

𝑢𝐸,𝑖(𝑗) = 𝑎1 cos(𝑗𝜔1,𝑖𝛥𝑡 + 𝜙1,𝑖) + 𝑎2 cos(𝑗𝜔2,𝑖𝛥𝑡 + 𝜙2,𝑖),
𝑢𝐴,𝑖(𝑗) = 𝑎3 cos(𝑗𝜔3,𝑖𝛥𝑡 + 𝜙3,𝑖) + 𝑎4 cos(𝑗𝜔4,𝑖𝛥𝑡 + 𝜙4,𝑖),
𝑢𝑅,𝑖(𝑗) = 𝑎5 cos(𝑗𝜔5,𝑖𝛥𝑡 + 𝜙5,𝑖) + 𝑎6 cos(𝑗𝜔6,𝑖𝛥𝑡 + 𝜙6,𝑖),
𝑢𝑇 ,𝑖(𝑗) = 𝑎7 cos(𝑗𝜔7,𝑖𝛥𝑡 + 𝜙7,𝑖) + 𝑎8 cos(𝑗𝜔8,𝑖𝛥𝑡 + 𝜙8,𝑖).

The frequencies 𝜔1,𝑖,… , 𝜔8,𝑖 are distinct harmonics of the fundamental

frequency 2𝜋∕𝑇𝑖. By choosing the frequencies to be distinct harmonics,
the set of watermarking signals is ensured to be orthogonal. The water-

marking signal design problem boils down to appropriately choosing

the frequencies 𝜔𝑘,𝑖 and phase differences 𝜙𝑘,𝑖 for 𝑘 = 1,… , 8 and

𝑖 = 1,… , 𝑁 .

The frequencies 𝜔𝑘,𝑖, for 𝑘 = 1,… , 8 and 𝑖 = 1,… , 𝑁 , are chosen

within the interval [2𝜋∕𝑇𝑖 𝜔̄], where 𝜔̄ is to be selected based on the
bandwidth of the aircraft’s frequency response. Additionally, 𝜔̄ should

satisfy the constraint 𝜔̄ < 𝜋∕𝛥𝑡 to prevent aliasing, where 𝜋∕𝛥𝑡 is the
Nyquist frequency. Since the dynamics of an sUAS are nonlinear, it is

important to take into account the effect of nonlinearities on the output

response of the sUAS during the selection of the 𝜔𝑘,𝑖’s. If the input to a

nonlinear system is a sum of sinusoids of different frequencies, then the

output frequencies not only contain the input frequencies, but also the

harmonics and the intermodulation frequencies (Rugh, 1981). Thus, to

make sure that a watermarking signal in one channel, say the elevator

channel, does not influence the responses of the sUAS to the water-

marking signals of the other three channels, the frequencies 𝜔3,𝑖,… , 𝜔8,𝑖
must be chosen to be different from the harmonic frequencies and the

intermodulation frequencies corresponding to 𝜔1,𝑖 and 𝜔2,𝑖.

Consider the following assumptions: (i) the velocity of the sUAS is

constant during the time interval when the watermarking signals are

injected; (ii) the small angle approximations hold for the trigonometric

terms containing the angle of attack (AoA) and the angle of sideslip

(AoSS); and (iii) the aerodynamic model is linear in the angular rates,

AoA, AoSS, and the control inputs. Under these assumptions, it can

be easily verified from the aircraft equations of motion, presented

in Stevens, Lewis, and Johnson (2015) among others, that the input–

output map from the control inputs (𝛿𝐸, 𝛿𝐴, 𝛿𝑅, 𝛿𝑇 ) to the accelerations
(𝑎𝑥, 𝑎𝑦, 𝑎𝑧, 𝑝̇) contains only second-order nonlinear terms pertaining to
the inertial couplings. Here, 𝑎𝑥, 𝑎𝑦, 𝑎𝑧 denote the three linear acceler-

ations, and 𝑝̇ denotes the roll acceleration. The assumptions (i)-(iii)

are reasonable in this study given the proposed excitation signals and

the fact that the sUAS is assumed to operate within normal flight

regimes, where nonlinear aerodynamic effects due to high angles of

attack are not present. Thus, the sUAS is approximated as a second-

order nonlinear system for the purposes of this work. Volterra–Wiener

theory of nonlinear systems (Rugh, 1981) can be used to determine the

frequency response of a second-order nonlinear system to a two-tone

watermarking signal. Given a second-order nonlinear system subjected

to a two-tone input with frequencies 𝜔1 and 𝜔2, the output spectrum

consists of the following frequency components (Wu, Lang, & Billings,

2007): the input frequencies 𝜔1 and 𝜔2, the harmonics 2𝜔1 and 2𝜔2,

and the intermodulation frequencies 𝜔1 + 𝜔2 and |𝜔1 − 𝜔2|. Bearing in
mind the preceding observations, the frequencies 𝜔1,𝑖,… , 𝜔8,𝑖 are chosen

using Algorithm 1. If the algorithm does not compute all the frequencies

for some 𝑖 ∈ {1,… , 𝑁}, then the corresponding time interval 𝑇𝑖 needs
to be increased until all the frequencies are chosen.

Once the frequencies𝜔𝑘,𝑖, for 𝑘 = 1,… , 8 and 𝑖 = 1,… , 𝑁 , are chosen,

the phase lags 𝜙𝑘,𝑖 need to be computed to complete the design of the

watermarking signals. As mentioned earlier, each watermarking signal

is to be designed such that the energy content of the signal is maximized

while minimizing the amplitude of the signal. The crest factor (or peak
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Algorithm 1: Selecting the frequencies of the watermarking signals

Inputs: time-intervals 𝑇𝑖, for 𝑖 = 1,… , 𝑁 , and 𝜔̄.

Outputs: watermarking frequencies 𝜔𝑘,𝑖 for 𝑘 = 1,… , 8 and 𝑖 =
1,… , 𝑁 .

procedure

for 𝑖 = 1 ∶ 𝑁 do

Initialize the set 𝚯1 which consists of the harmonics of 2𝜋∕𝑇𝑖
within the interval [2𝜋∕𝑇𝑖 𝜔̄].
Initialize the sets 𝚯2 = { }, 𝚯3 = { }.
for 𝑗 = 1 ∶ 4 do

Choose frequencies 𝜔2𝑗−1,𝑖 ∈ 𝚯1 and 𝜔2𝑗,𝑖 ∈ 𝚯1 such that

𝜔2𝑗−1,𝑖 ≠ 𝜔2𝑗,𝑖, 𝜔2𝑗−1,𝑖 ∉ 𝚯2 ∪𝚯3, 𝜔2𝑗,𝑖 ∉ 𝚯2 ∪𝚯3,

2𝜔2𝑗−1,𝑖 ∉ 𝚯2 ∪𝚯3, 2𝜔2𝑗,𝑖 ∉ 𝚯2 ∪𝚯3,

(𝜔2𝑗−1,𝑖+𝜔2𝑗,𝑖) ∉ 𝚯2∪𝚯3, and |𝜔2𝑗−1,𝑖−𝜔2𝑗,𝑖| ∉ 𝚯2∪𝚯3.

Update the sets 𝚯2 and 𝚯3
𝚯2 ← {𝜔2𝑗−1,𝑖, 𝜔2𝑗,𝑖} ∪𝚯2,

𝚯3 ← {2𝜔2𝑗−1,𝑖, 2𝜔2𝑗,𝑖, (𝜔2𝑗−1,𝑖+𝜔2𝑗,𝑖), |𝜔2𝑗−1,𝑖−𝜔2𝑗,𝑖|}∪𝚯3.

factor) is a useful measure that relates the peak amplitude of a signal

to its root mean square (rms) value (Boyd, 1986). The crest factor of a

signal represented by the vector 𝐮 is denoted by 𝐶𝐹 (𝐮) and is defined
as 𝐶𝐹 (𝐮) = ‖𝐮‖∞∕‖𝐮‖2, where ‖𝐮‖∞ and ‖𝐮‖2 are the ∞-norm and

2-norm of 𝐮, respectively. The design objective then is to choose the
phase lags 𝜙𝑘,𝑖 such that the crest factor of each watermarking signal is

minimized. This problem is very similar to the problem of designing

optimal multi-axes inputs in frequency-domain system identification.

Morelli (2003) provides a simple algorithm to compute the phase lags of

a multitone signal such that the crest factor of the signal is minimized.

The amplitudes 𝑎1,… , 𝑎8 are the inputs to the algorithm in addition

to the frequencies 𝜔𝑘,𝑖. Due to paucity of space, the algorithm is not

provided here; see Morelli (2003) for more details.

A representative set of watermarking signals designed using the

above method is shown in Fig. 3. The following parameters are used

in designing the watermarking signals: a time interval of 2 s, a sampling
period of 40ms, 𝜔̄ = 6.0Hz, and amplitudes 𝑎1 = 𝑎2 = 𝑎3 = 𝑎4 =
𝑎5 = 𝑎6 = 𝑎7 = 𝑎8 = 0.1. The following watermarking frequencies are
obtained following Algorithm 1: 𝜔1 = 1.0Hz, 𝜔2 = 2.0Hz, 𝜔3 = 1.25Hz,
𝜔4 = 2.5Hz, 𝜔5 = 1.75Hz, 𝜔6 = 3.5Hz, 𝜔7 = 2.25Hz, and 𝜔8 = 4.5Hz.

Detection principle

The detection principle uses the frequency contents of the three

linear accelerometer measurements 𝑎𝑥, 𝑎𝑦, 𝑎𝑧 and the roll acceleration

measurement 𝑝̇. Specifically, the frequency content of each of the linear

accelerations 𝑎𝑥, 𝑎𝑦, and 𝑎𝑧 is analyzed to detect actuator attacks in

the throttle channel, the rudder channel, and the elevator channel,

respectively. The frequency content of the roll acceleration 𝑝̇ is used to

detect actuator attacks in the aileron channel. The reason for choosing

𝑎𝑥, 𝑎𝑦, 𝑎𝑧, and 𝑝̇ is that these measurements capture the direct feed-

through effects from the respective control commands, which was found

to enhance the detection capability of the detector.

The detection metric for the elevator channel is denoted by 𝐷𝐸 and

is given by the following expression:

𝐷𝐸 =
𝑃𝑎𝑧

(𝜔1,𝑖) + 𝑃𝑎𝑧 (𝜔2,𝑖)
𝑃𝛿𝐸

(𝜔1,𝑖) + 𝑃𝛿𝐸 (𝜔2,𝑖)
, (2)

where 𝑃𝑎𝑧 (𝜔1,𝑖) denotes the normalized power of the signal 𝑎𝑧 over the
monitoring interval at the frequency 𝜔1,𝑖; the normalization is done with

respect to the total power of the signal over the monitoring interval.

Thus, 𝑃𝑎𝑧 (𝜔1,𝑖) is a measure of the relative power of the signal 𝑎𝑧
concentrated at the frequency 𝜔1,𝑖 compared to the total power of the

signal over the monitoring interval. The other terms in (2) are defined

similarly. An actuator attack on the elevator channel is detected if

𝐷𝐸 > 𝑅𝐸 , where 𝑅𝐸 is a threshold obtained from simulations with a

nonlinear model of the sUAS or from flight tests. The detection metrics

for the other three channels are similarly defined as

𝐷𝐴 =
𝑃𝑝̇(𝜔3,𝑖) + 𝑃𝑝̇(𝜔4,𝑖)
𝑃𝛿𝐴

(𝜔3,𝑖) + 𝑃𝛿𝐴 (𝜔4,𝑖)
, 𝐷𝑅 =

𝑃𝑎𝑦
(𝜔5,𝑖) + 𝑃𝑎𝑦 (𝜔6,𝑖)

𝑃𝛿𝑅
(𝜔5,𝑖) + 𝑃𝛿𝑅 (𝜔6,𝑖)

, and

𝐷𝑇 =
𝑃𝑎𝑥

(𝜔7,𝑖) + 𝑃𝑎𝑥 (𝜔8,𝑖)
𝑃𝛿𝑇

(𝜔7,𝑖) + 𝑃𝛿𝑇 (𝜔8,𝑖)
.

The detection metrics 𝐷𝐸 , 𝐷𝐴, 𝐷𝑅, and 𝐷𝑇 are computed after 𝑇𝑤
seconds from when the watermarking signals are injected, and the

following four conditions are checked: 𝐷𝐸 > 𝑅𝐸 , 𝐷𝐴 > 𝑅𝐴, 𝐷𝑅 > 𝑅𝑅,

and𝐷𝑇 > 𝑅𝑇 . If a condition is violated, then the corresponding actuator

is deemed to be under attack. Watermarking-based detection relies on

the premise that the responses of the sUAS to the watermarking signals,

as observed from the frequency contents of the linear acceleration

measurements and the roll acceleration measurement, are affected by

the presence of actuator attacks. Consequently, a zero-frequency attack

input, i.e., an attack input that is constant during the monitoring

interval, cannot be detected by the watermarking-based detector. This

is one of the shortcomings of this approach.

Evaluation of the method through nonlinear simulations and flight experi-

ments

As an illustrative example, the proposed active detection method is

used to detect different types of actuator attacks on the sUAS described

in Section 3. The effectiveness of the method is studied through ex-

tensive nonlinear simulations as well as flight experiments. During the

simulations and flight tests, the aircraft is controlled by a linear time-

invariant (LTI) ∞ path-following controller. The synthesis procedure

for the LTI path-following controller and the nonlinear model of the

sUAS used in the simulations are described in Muniraj, Palframan,

Guthrie, and Farhood (2017). The choice of the controller is arbitrary

since the performance of the watermarking-based detector does not

depend on the type of controller used.

In the simulations, the atmospheric disturbances applied consist of a

3.5m∕s steady wind in the North-East direction and medium turbulence

generated by the low-altitude Dryden wind turbulence model (Gage,

2003). The wind speed and turbulence intensity used in the simulations

are typical worst-case conditions that can be handled by sUAS of the

type considered in this example. The sensor measurements of the aircraft

consist of the airspeed 𝑉𝑎, the body-axis angular rates 𝑝, 𝑞, and 𝑟, the

Euler angles 𝜙, 𝜃, and 𝜓 , and the aircraft position (𝑁,𝐸,𝐻) in the North-
East-Down frame. Each of the measurements is assumed to be corrupted

by sensor noise, which is generated in the simulations from a zero-

mean normal distribution. The standard deviations, 𝜎(⋅), used for the

different measurements are as follows: 𝜎𝑉𝑎 = 2m∕s, 𝜎𝑝∕𝑞∕𝑟 = 0.5 deg∕s,
𝜎𝜙∕𝜃∕𝜓 = 0.57 deg, and 𝜎𝑁∕𝐸∕𝐻 = 2m. The values for the standard
deviations are obtained from sensor specifications and laboratory tests.

During the simulations, the aircraft is subjected to four different types

of possible actuator attacks: struck actuator attacks where the actuator

commands are frozen in time, sinusoidal attacks where the attack input

is a sinusoidal signal, random attacks where the attack inputs are

generated pseudorandomly, and scaling attacks where the attack inputs

vary linearly with time starting from zero.

The type of path the sUAS is tasked to follow, the type of attack,

and the intensity of attack are among the factors that may impact the

performance of the watermarking-based detector. To study the effects

of these factors, extensive simulations are performed. Specifically, three

different paths that are widely used in many sUAS applications are

considered, namely, a circle of radius 110.5m, a moderate lemniscate
generated as in Muniraj et al. (2017), and a race track composed of two

straight line segments of length 500.0m and two semi-circular segments

of radius 110.5m. The attack intensity is reflected by the magnitude of
the attack in the case of a struck actuator attack, the amplitude and

frequency of the attack in the case of a sinusoidal attack, and the rate

of change of the attack magnitude in the case of a scaling attack. Struck

actuator attacks of different magnitudes, ranging from 1.3ms to 1.7ms in
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steps of 0.1ms, are included in the simulations. Frequencies ranging from
0.1Hz to 6.0Hz in steps of 0.2Hz and amplitudes ranging from 0.05ms to
0.3ms in steps of 0.05ms are considered for the sinusoidal attack signals.
Scaling attacks with different intensities are simulated by changing the

rate of variation of the attack signal from 0.05ms∕s to 0.15ms∕s in steps
of 0.02ms∕s. The duration of the actuator attack is chosen such that the
sUAS does not reach an unrecoverable state during the simulations, since

the simulations solely focus on attack detection without employing any

mitigation strategies. For each combination of path, type of attack, and

intensity of attack, the actuator attack is executed as follows: at each

time instant 𝑡𝑘 = 8𝑘 s for 𝑘 = 0, 1,… , 1000, the attack signal is applied
for a duration of 4 s. That is, every 8 s an attack signal is applied for the
duration of 4 s. The reason for waiting 4 s after the end of an attack signal
before starting another attack signal is to allow the aircraft to recover

from the previous attack. Depending on the type and intensity of attack,

it may be possible to extend the duration of each attack instance beyond

4 s. For instance, the considered random attack and sinusoidal attacks

may be applied over longer durations without causing loss of control.

However, to enable comparisons between the different types of actuator

attacks, the attack duration for all the four types of attacks is set to 4 s.
Ten sets of watermarking signals, denoted by 𝐖𝑖 for 𝑖 = 1,… , 10,

are designed using the procedure described earlier, where each set

corresponds to a time interval 𝑇𝑖 given by 𝑇𝑖 = 1.42 + 0.1𝑖. The values
for 𝑇𝑖 are chosen such that they are contained within the bandwidth

of the aircraft’s frequency response. The frequency 𝜔̄, which is one of

the inputs to Algorithm 1, is chosen as 6.0Hz for the sUAS considered
in this example. A sampling period of 40ms and a monitoring interval
of 4 s are used. As explained earlier, the monitoring interval has to
be larger than the time interval of the watermarking signals. Another

consideration in choosing the value of 𝑇𝑤 is the number of data points

available for computing the normalized power values in (2). An accurate

estimate of the normalized power requires a large number of data

points, but increasing the value of 𝑇𝑤 also delays the detection of the

actuator attack. In this study, the multiple signal classification (MUSIC)

algorithm (Stoica & Moses, 2005) is used to compute the power spectral

density and hence the normalized power. It is found that collecting 100
data points, which requires a monitoring interval of 4 s, is sufficient to
accurately estimate the normalized power.

Since the watermarking signals act as disturbances on the control

commands, it is important to first verify that the path-following perfor-

mance of the sUAS is not degraded as a result of the use of the water-

marking signals. Simulations are therefore performed in the absence of

actuator attacks, where watermarking signals chosen pseudorandomly

from𝐖∶={𝐖1,… ,𝐖10} every 𝑇𝑤 = 4 s are superimposed on the control
commands. As in Muniraj et al. (2017), in these simulations the mean

path error (MPE) is used as a measure of the path-following performance

of the sUAS. For closed paths, such as a lemniscate or a circular path,

MPE is computed over each cycle, or completed round, of the path.

Specifically, the Euclidean distance between the aircraft position and

the closest point on the reference path is measured at each time instant

in the cycle, and then the MPE over the cycle is calculated as the mean

of these distances. The mean path errors are computed for each cycle

of the path and are compared with those from simulations where the

watermarking signals are not injected. Fig. 4 shows the distributions

of the mean path errors for the lemniscate path for the two cases. It is

observed from the figure that the watermarking signals do not have a

significant effect on the path-following performance, and the maximum

MPE is found to increase by only about 2%.
The parameters of the watermarking-based detector, namely, the

thresholds 𝑅𝐸 , 𝑅𝐴, 𝑅𝑅, and 𝑅𝑇 , are specific to a particular sUAS

platform. For the sUAS platform considered in this study, the values

for the thresholds are obtained from data gathered during different

flight tests when the aircraft is not under any attack. Firstly, the metrics

𝐷𝐸 , 𝐷𝐴, 𝐷𝑅, and 𝐷𝑇 are computed from the flight test data and their

distributions are plotted. Then, each threshold value is chosen as 10%
less than the minimum value in the corresponding distribution. The

Fig. 3. A representative set of watermarking signals.

Fig. 4. Effect of watermarking signals on the path-following performance; red bars

correspond to the simulations where the watermarking signals are superimposed with the

control commands, and blue bars correspond to the simulations without the watermarking

signals. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

threshold values thus obtained are given as 𝑅𝐸 = 0.43, 𝑅𝐴 = 0.55,
𝑅𝑅 = 0.48, and 𝑅𝑇 = 0.42.

A summary of the simulation results is provided in Table 1. The

performance of the detector is assessed in terms of the true positive rate

(TPR), the false positive rate (FPR), and the mean maximum position

error before detection (MMPE) for the four different types of attack.

MMPE is a measure of the degradation in path-following performance of

the sUAS before the actuator attack is detected. It is obtained as follows:

the maximum position error before detection is computed for eachmoni-

toring interval where an attack is detected, and then MMPE is calculated

as the mean of these errors. True positive rate is the probability that

the detector correctly detects the actuator attack, whereas false positive

rate is the probability that the detector identifies an attack when there

is no attack. Given the TPR and the FPR, the false negative rate (FNR)

and the true negative rate (TNR) can be easily computed. For instance,

a TPR of 99% corresponds to an FNR of 1%. Since the FPR does not

depend on the type of attack, all four types of attack have the same FPR,

which is computed using data from all the simulation segments where

the sUAS is not under an actuator attack. It is observed from Table 1
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Table 1

Performance of the watermarking-based detector from simulations and flight tests.

Type of attack Simulations Flight tests

TPR (%) FPR (%) MMPE (m) TPR (%) FPR (%)

Struck actuator attack 99.37 0.42 5.41 100.00 0.85

Sinusoidal actuator attack 83.74 0.42 3.59 75.00 0.85

Random actuator attack 99.12 0.42 3.23 100.00 0.85

Scaling actuator attack 60.44 0.42 4.25 70.00 0.85

that the performance of the detector depends on the type of attack: the

detector has a better performance for the random actuator attack and the

struck actuator attack compared to the sinusoidal and scaling actuator

attacks. The reason for the lower detection rates in the case of sinusoidal

and scaling actuator attacks is that the attack inputs do not change

the output frequency characteristics sufficiently for certain scaling and

sinusoidal attacks. This scenario happens when an attack input of small

amplitude in the case of a sinusoidal attack or low intensity in the

case of a scaling attack has frequency content such that the frequency

components with significant energy are concentrated very close to zero.

The detector expectedly does not perform well in this case since, as

mentioned before, the watermarking-based detector cannot detect zero-

frequency attack inputs, and further its performance degrades as the

attack inputs approach this limiting case. Due to the specific nature

of the attack, the degradation in path-following performance before

detection, as measured using the MMPE metric, is higher for the struck

actuator attack and the scaling actuator attack compared to the other

two attacks. It is observed from the simulations that the performance of

the detector is not influenced by the type of path and is only dependent

on the type of actuator attack.

In addition to the extensive simulations, flight tests are also con-

ducted using the sUAS platform described in Section 3. During the

flight tests, the actuator attacks are simulated through the autopilot

software. The monitoring interval and the watermarking signals used

in the flight tests are the same as the ones used in the simulations.

However, one difference in implementation between the simulations

and the flight tests is in the time interval between two successive

actuator attacks. During the flight tests, actuator attacks are simulated

every 12 s instead of every 8 s as in the simulations. However, the time
duration of the attack signals is retained as 4 s. A longer time interval
between two successive actuator attacks is used to ensure that the sUAS

does not go out of control during the flight tests. The sUAS is tasked

to follow the lemniscate path during the flight tests. The intensities

of the attacks considered during the flight tests are the same as those

used in the simulations for the struck actuator attack and the scaling

attack. But the attack intensities considered for the sinusoidal attack

are different: frequencies ranging from 1.0Hz to 5.0Hz in steps of 1.0Hz
and amplitudes ranging from 0.1ms to 0.3ms in steps of 0.1ms are
simulated. In the flight tests, each combination of the type of attack and

the intensity of attack is applied 10 times, and the actuator attacks are
implemented one channel at a time. Results from a representative flight

test is shown in Fig. 5, where a random actuator attack in the elevator

channel is simulated. The figure shows the time evolution of 𝐷𝐸 , 𝐷𝐴,

𝐷𝑅, and 𝐷𝑇 ; the red lines in the figure denote the threshold values, and

the black vertical lines denote the time interval of the simulated attack.

Since the inequality 𝐷𝐸 > 𝑅𝐸 is violated during the time interval when

the attack is simulated, the detector successfully detects the actuator

attack in the elevator channel. A flight segment with only one simulated

actuator attack is shown in Fig. 5 to clearly display the time evolution of

𝐷𝐸 , 𝐷𝐴, 𝐷𝑅, and 𝐷𝑇 . The detection performance of the watermarking-

based detector from the flight tests is summarized in Table 1. It is

observed that the conclusions drawn from the simulation results also

hold for the flight test results.

Fig. 5. Results from a representative flight test where a random actuator attack is

simulated from 𝑡 = 46 s to 𝑡 = 50 s in the elevator channel.

Merits and shortcomings of the method

One of the important merits of this method is that a system model

is not required in order to design the detector. However, if a system

model is available, then it can be used to obtain the thresholds 𝑅𝐸 ,

𝑅𝐴, 𝑅𝑅, and 𝑅𝑇 . Otherwise, the thresholds can be obtained from flight

tests as explained earlier. Also, the detection performance is not strongly

influenced by exogenous disturbances, such as winds, atmospheric tur-

bulence, and sensor noise, as evidenced from the simulation and flight

test results. Finally, the detector is easy to implement and does not incur

a high computational overhead, which is an important requirement for

implementation in an sUAS with limited computational capabilities.

The major shortcoming of this method is that it can only detect the

presence of an actuator attack and not the type or magnitude of the

attack. Knowledge about the type and magnitude of the attack would

be very helpful in developing mitigation strategies through controller

reconfiguration, for example. Since the method relies on the frequency

response characteristics of the sUAS, this method cannot detect actuator

attacks that are constant in magnitude during the monitoring interval.

The detection latency of the method is dependent on the value of 𝑇𝑤, a

large value for 𝑇𝑤 results in a higher detection latency. But reducing the

value of 𝑇𝑤 would result in a power spectrum with a low resolution and

thereby increase the error in the computation of the detection metric,

leading to a degraded detection performance. In effect, there is a tradeoff

between detection performance and detection latency.

4.2. Estimation-based detection method

The estimation-based detector proposed in this section overcomes

some of the limitations of the watermarking-based detector discussed

previously. In this method, the actuator attack detection problem is cast

as an unknown input estimation problem, where the unknown inputs are

the actuator attack signals and the wind velocities. This method makes

it possible to explicitly estimate the type and magnitude of the actuator

attack, which should be helpful in developing mitigation strategies.

Unknown input estimators for nonlinear systems fall under the

following three categories: extended Kalman filter (EKF)-based es-

timators (Caglayan & Lancraft, 1983; Kim, Lee, & Park, 2009; Lu,

Van Eykeren, van Kampen, de Visser, & Chu, 2015), Bayesian es-

timators (Fang, Srivas, de Callafon, & Haile, 2017), and observers

designed based on simplified models using LMI-based techniques (Ha

& Trinh, 2004) or nonlinear estimation techniques, such as sliding

mode observers (Fridman, Shtessel, Edwards, & Yan, 2008). The method

proposed in this section makes use of an unknown input estimator
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called the two-stage extended Kalman filter (TSEKF), which falls under

the first category of unknown input estimators described before. The

recursive nature of TSEKF and its low computational cost (Hsieh &

Chen, 1999)make it appealing for real-time implementation on an sUAS.

The TSEKF, originally proposed in Caglayan and Lancraft (1983), is an

extension of the optimal two-stage Kalman filter (TSKF), which was

introduced in Friedland (1969). Although the TSEKF does not guarantee

convergence to an optimal solution like the TSKF, it was found to

give promising results in solutions to various problems. For instance,

the TSEKF and its variants have been used by researchers to estimate

unknown biases in an INS–GPS system (Kim et al., 2009), to reconstruct

sensor faults in the IMU (Lu, van Kampen, de Visser, & Chu, 2016), and

to estimate the speed and rotor flux of induction machines (Hilairet,

Auger, & Berthelot, 2009). The novelty of this work is in formulating

the actuator attack detection problem as an unknown input estimation

problem and using a TSEKF to estimate the actuator attacks from sensor

measurements of an sUAS in the presence of exogenous disturbances,

such as sensor noise, steady wind, and atmospheric turbulence. The

formulation of the unknown input estimation problem is described next.

Problem formulation

The nonlinear model used in the TSEKF is based on the rigid-body

equations of motion for a fixed-wing aircraft, available in Stevens et al.

(2015) among others. There are three reference frames that are of

interest in writing down the equations, namely, the Earth-fixed inertial

reference frame denoted by 𝐼 , the body-fixed reference frame denoted

by 𝑏, and the wind reference frame denoted by 𝑤. The inertial

reference frame has its origin on the surface of the Earth and has

components (𝒙𝐼 , 𝒚𝐼 , 𝒛𝐼 ), which point to the North, East, and downwards,
respectively. The origin of the 𝑏 frame is affixed to the aircraft center

of gravity (CG), and its (𝒙𝑏, 𝒚𝑏, 𝒛𝑏) components point towards the aircraft
nose, right wingtip, and downwards, respectively. The wind reference

frame has its origin at the aircraft CG and is obtained from the 𝑏 frame

by applying the following rotations: a left-handed rotation about the

𝒚𝑏-axis by the angle of attack 𝛼, followed by a right-handed rotation

about the resulting 𝒛-axis by the sideslip angle 𝛽.

The rotation between the 𝐼 frame and the 𝑏 frame is defined by the

roll, pitch, and yaw Euler angles, denoted as 𝜙, 𝜃, and 𝜓 , respectively.

The linear velocity of 𝑏 with respect to 𝐼 expressed in 𝑏 is denoted as

𝒗 = [𝑢, 𝑣, 𝑤]𝑇 . Likewise, the angular velocity is denoted as 𝝎 = [𝑝, 𝑞, 𝑟]𝑇 .
Denoting the velocity of the wind relative to 𝐼 as 𝒗𝑤 = [𝑢𝑤, 𝑣𝑤, 𝑤𝑤]𝑇 ,
the linear velocity of the aircraft relative to the wind can be written as

𝒗̄ = 𝒗−𝒗𝑤. The airspeed of the aircraft 𝑉𝑎, the angle of attack 𝛼, and the

angle of sideslip 𝛽 are defined as

𝑉𝑎 = (𝒗̄𝑇 𝒗̄)
1
2 , 𝛼 = arctan

𝑤 −𝑤𝑤
𝑢 − 𝑢𝑤

, and 𝛽 = arcsin
𝑣 − 𝑣𝑤
𝑉𝑎

.

By virtue of the aircraft’s symmetry about the 𝑥𝑧-plane of the body-fixed

reference frame, the inertia terms 𝐼𝑥𝑦, 𝐼𝑦𝑥, 𝐼𝑦𝑧, and 𝐼𝑧𝑦 are set to zero. It

is also assumed that the other cross-product of inertia 𝐼𝑥𝑧 is negligibly

small. The input vector 𝒖 is given by 𝒖 = [𝛿𝐸, 𝛿𝐴, 𝛿𝑅, 𝛿𝑇 ]𝑇 , where 𝛿𝐸 ,
𝛿𝐴, and 𝛿𝑅 are the elevator, aileron, and rudder deflections, respectively,

and 𝛿𝑇 is the throttle input. The unknown actuator attack input vector

is denoted by 𝒖𝑎 = [𝛿𝑎
𝐸
, 𝛿𝑎
𝐴
, 𝛿𝑎
𝑅
, 𝛿𝑎
𝑇
]𝑇 . 𝐹𝑥, 𝐹𝑦, 𝐹𝑧,𝑀𝑥,𝑀𝑦, and𝑀𝑧 denote

the components of the net external force and the external moment acting

on the aircraft expressed in the body-fixed reference frame. Finally, the

wind velocity 𝒗𝑤 is decomposed for the purpose of estimation into two

components, namely, a steady-wind component denoted by 𝒗̄𝑤 and a

zero-mean wind component 𝒘 modeled as white Gaussian noise with

covariance defined by 𝐸{𝒘(𝑡)𝒘𝑇 (𝑡 + 𝜏)} = 𝑸𝛿𝜏 , where 𝛿𝜏 = 1 for 𝜏 = 0
and 𝛿𝜏 = 0 for 𝜏 ≠ 0.

Having made the necessary definitions, the nonlinear estimation

model can be formally written as

𝒙̇(𝑡) = 𝒇 (𝒙(𝑡), 𝒖(𝑡),𝒘(𝑡), 𝒃(𝑡)), 𝒚(𝑡) = 𝒉(𝒙(𝑡), 𝒖(𝑡), 𝒃(𝑡)) + 𝜼(𝑡), (3)

where 𝜼(𝑡) denotes the sensor noise and is modeled as a Gaussian white
noise process with covariance defined by 𝐸{𝜼(𝑡)𝜼𝑇 (𝑡 + 𝜏)} = 𝑹𝛿𝜏 . The

state and measurement vectors are given by 𝒙 =
[
𝝎𝑇 , 𝒗𝑇 , 𝜙, 𝜃

]𝑇
and

𝒚 =
[
𝝎𝑇 , 𝒗𝑇 , 𝜙, 𝜃, 𝑉𝑎, 𝑎𝑥, 𝑎𝑦, 𝑎𝑧

]𝑇
, respectively. The unknown input

vector 𝒃 is given by 𝒃 =
[
𝒖𝑇
𝑎
, 𝒗̄𝑇

𝑤

]𝑇
and is composed of the actuator

attack input vector and the steady wind component of the wind vector.

The state equation (3) is given by following set of equations:

𝑢̇(𝑡) = −𝑞𝑤 + 𝑟𝑣 + 𝐹𝑥(𝒗̄,𝝎, 𝒖, 𝒃)∕𝑚 − 𝑔 sin 𝜃,
𝑣̇(𝑡) = −𝑟𝑢 + 𝑝𝑤 + 𝐹𝑦(𝒗̄,𝝎, 𝒖, 𝒃)∕𝑚 + 𝑔 cos 𝜃 sin𝜙,
𝑤̇(𝑡) = −𝑝𝑣 + 𝑞𝑢 + 𝐹𝑧(𝒗̄,𝝎, 𝒖, 𝒃)∕𝑚 + 𝑔 cos 𝜃 cos𝜙,
𝑝̇(𝑡) = (𝑀𝑥(𝒗̄,𝝎, 𝒖, 𝒃) + (𝐼𝑦 − 𝐼𝑧)𝑞𝑟)∕𝐼𝑥,
𝑞̇(𝑡) = (𝑀𝑦(𝒗̄,𝝎, 𝒖, 𝒃) + (𝐼𝑧 − 𝐼𝑥)𝑝𝑟)∕𝐼𝑦,
𝑟̇(𝑡) = (𝑀𝑧(𝒗̄,𝝎, 𝒖, 𝒃) + (𝐼𝑥 − 𝐼𝑦)𝑝𝑞)∕𝐼𝑧,
𝜙̇(𝑡) = 𝑝 + (𝑞 sin𝜙 + 𝑟 cos𝜙) tan 𝜃,
𝜃̇(𝑡) = 𝑞 cos𝜙 − 𝑟 sin𝜙,

where 𝑚 is the aircraft mass and 𝑔 is the acceleration due to gravity. The

net external forces andmoments are written in terms of the aerodynamic

coefficients and the thrust force as

𝐹𝑥(𝒗̄,𝝎, 𝒖, 𝒃) = 𝐶𝑥(𝒗̄,𝝎, 𝒖, 𝒃)𝑞𝑆 + 𝑇 (𝑉𝑎, 𝛿𝑇 , 𝛿𝑎𝑇 ),
𝐹𝑦(𝒗̄,𝝎, 𝒖, 𝒃) = 𝐶𝑦(𝒗̄,𝝎, 𝒖, 𝒃)𝑞𝑆,
𝐹𝑧(𝒗̄,𝝎, 𝒖, 𝒃) = 𝐶𝑧(𝒗̄,𝝎, 𝒖, 𝒃)𝑞𝑆,
𝑀𝑥(𝒗̄,𝝎, 𝒖, 𝒃) = 𝐶𝑙(𝒗̄,𝝎, 𝒖, 𝒃)𝑞𝑆𝑏,
𝑀𝑦(𝒗̄,𝝎, 𝒖, 𝒃) = 𝐶𝑚(𝒗̄,𝝎, 𝒖, 𝒃)𝑞𝑆𝑐,
𝑀𝑧(𝒗̄,𝝎, 𝒖, 𝒃) = 𝐶𝑛(𝒗̄,𝝎, 𝒖, 𝒃)𝑞𝑆𝑏,

where 𝑆, 𝑏, and 𝑐 denote the wing area, wingspan, and the mean

aerodynamic chord, respectively. 𝑇 (𝑉𝑎, 𝛿𝑇 , 𝛿𝑎𝑇 ) denotes the thrust force
acting on the aircraft and is assumed to act along the 𝒙-axis of the 𝑏

frame. 𝑞 denotes the dynamic pressure and is given by 𝑞 = 0.5𝜌𝑉 2
𝑎
, where

𝜌 is the density of air. The aerodynamic model and the thrust model are

dependent on the sUAS, and in this work, the aerodynamic coefficients

are assumed to have the following model structure, which is same as

in Muniraj et al. (2017):

𝐶𝑥 = 𝐶𝑥0 + 𝐶𝑥𝛼 𝛼 + 𝐶𝑥𝛿𝑇
𝛿𝑇 + 𝐶𝑥𝑇 𝑇 (𝑉𝑎, 𝛿𝑇 , 𝛿

𝑎
𝑇
)∕(𝑞𝑆),

𝐶𝑦 = 𝐶𝑦0 + 𝐶𝑦𝛽 𝛽 + 𝐶𝑦𝛿𝐴
𝛿𝐴 + 𝐶𝑦𝛿𝑅

𝛿𝑅 + (𝐶𝑦𝑝𝑝 + 𝐶𝑦𝑟 𝑟)𝑏∕(2𝑉𝑎),

𝐶𝑧 = 𝐶𝑧0 + 𝐶𝑧𝛼 𝛼 + 𝐶𝑧𝛿𝐸
𝛿𝐸 + 𝐶𝑧𝑞 𝑞𝑐∕(2𝑉𝑎) + 𝐶𝑧𝑇 2𝑇 ∕(𝜌𝑆𝑉

2
𝑎
),

𝐶𝑙 = 𝐶𝑙0 + 𝐶𝑙𝛽 𝛽 + 𝐶𝑙𝛿𝐴
𝛿𝐴 + 𝐶𝑙𝛿𝑅

𝛿𝑅 + (𝐶𝑙𝑝𝑝 + 𝐶𝑙𝑟 𝑟)𝑏∕(2𝑉𝑎), (4)

𝐶𝑚 = 𝐶𝑚0 + 𝐶𝑚𝛼 𝛼 + 𝐶𝑚𝛿𝐸
𝛿𝐸 + 𝐶𝑚𝑞 𝑞𝑐∕(2𝑉𝑎),

𝐶𝑛 = 𝐶𝑛0 + 𝐶𝑛𝛽 𝛽 + 𝐶𝑛𝛿𝐴
𝛿𝐴 + 𝐶𝑛𝛿𝑅

𝛿𝑅 + (𝐶𝑛𝑝𝑝 + 𝐶𝑛𝑟 𝑟)𝑏∕(2𝑉𝑎),

where 𝛿𝐸 = 𝛿𝐸 + 𝛿𝑎
𝐸
, 𝛿𝐴 = 𝛿𝐴 + 𝛿𝑎

𝐴
, 𝛿𝑅 = 𝛿𝑅 + 𝛿𝑎

𝑅
, and 𝛿𝑇 = 𝛿𝑇 + 𝛿𝑎

𝑇
.

The TSEKF is used to estimate the state 𝒙 and the unknown input

vector 𝒃 using the system model described in Eqs. (3) to (4). Although

the state and measurement equations are provided in continuous-time,

the TSEKF itself is implemented in discrete-time. The unknown input

vector is modeled in the TSEKF as 𝒃𝑘+1 = 𝒃𝑘 + 𝒘𝒃
𝑘
, where 𝒃𝑘+1 =

𝒃(𝑡𝑘+1) and 𝑡𝑘+1 = 𝑘𝛥𝑡, with 𝛥𝑡 being the sampling time. 𝒘𝒃
𝑘
is a zero-

mean Gaussian white noise process with the covariance defined as

𝐸{𝒘𝒃
𝑘
(𝒘𝒃
𝑘+𝜏 )

𝑇 } = 𝑸𝒃𝛿𝜏 . It is also assumed that the unknown actuator

attack inputs and the wind disturbances are independent processes,

which is a reasonable assumption to make since it is very difficult for

the attacker to accurately measure atmospheric turbulence and modify

the attack inputs accordingly. The TSEKF consists of two components,

namely, the bias-free filter, which estimates the state vector assuming

that the unknown input vector is zero, and a bias filter, which estimates

the unknown input vector. The final state estimate is a combination of

the estimates from the bias-free filter and the bias filter. Due to space

considerations, the TSEKF algorithm is not provided here; the interested

reader is referred to Caglayan and Lancraft (1983) for the details of the

algorithm.

195



D. Muniraj and M. Farhood Control Engineering Practice 83 (2019) 188–202

Table 2

Thrust coefficients used in the polynomial thrust model.

Term Value Term Value Term Value Term Value

𝑝00 −1.0835 × 104 𝑝10 −1.4884 × 101 𝑝01 3.6875 × 101 𝑝20 −5.3886 × 10−2
𝑝11 4.6225 × 10−2 𝑝02 −4.9518 × 10−2 𝑝30 −4.9386 × 10−3 𝑝21 4.1153 × 10−4
𝑝12 −5.3590 × 10−5 𝑝03 3.2746 × 10−5 𝑝40 −8.3496 × 10−6 𝑝31 6.9799 × 10−6
𝑝22 −4.7319 × 10−7 𝑝13 2.7065 × 10−8 𝑝04 −1.0653 × 10−8 𝑝50 −5.2178 × 10−7
𝑝41 2.9825 × 10−8 𝑝32 −2.5547 × 10−9 𝑝23 1.3625 × 10−10 𝑝14 −4.9870 × 10−12
𝑝05 1.3646 × 10−12

An actuator attack in a particular channel is detected if the estima-

tion of the unknown actuator attack input corresponding to that channel

exceeds a threshold. The threshold values are used to minimize the

number of false positives, which can occur when the TSEKF estimates a

non-zero attack input vector of small magnitude due to the presence of

exogenous disturbances, even though the sUAS is not under any actuator

attack. Further details on how to choose the threshold values will be

given in the next subsection.

Simulations and flight experiments

The simulation setup explained in the previous section and used to

study the effectiveness of the active detection method is also used here.

The values for the inertia matrix of the aircraft are the same as those

in Muniraj et al. (2017). The values for the aerodynamic coefficients

in the nonlinear estimation model are the same as the ones used for

the simulation model. However, a different thrust model is used for

estimation. In the simulations, a table-lookup thrust model is used with

the airspeed and the PWM throttle command as the inputs. Since a table-

lookup model is computationally expensive and not suitable for real-

time implementation, a polynomial thrust model that approximates the

table-lookup thrust model is used instead in the estimation. Specifically,

a fifth-order polynomial in two variables is used and is given by

𝑇 (𝑉𝑎, 𝛿𝑇 ) = 𝑝00+𝑝10𝑉𝑎 + 𝑝01𝛿𝑇 + 𝑝20𝑉 2
𝑎
+ 𝑝11𝑉𝑎𝛿𝑇 + 𝑝02𝛿𝑇 2

+ 𝑝30𝑉 3
𝑎
+ 𝑝21𝑉 2

𝑎
𝛿𝑇 + 𝑝12𝑉𝑎𝛿𝑇 2+

𝑝03𝛿𝑇
3 + 𝑝40𝑉 4

𝑎
+ 𝑝31𝑉 3

𝑎
𝛿𝑇 + 𝑝22𝑉 2

𝑎
𝛿𝑇

2 + 𝑝13𝑉𝑎𝛿𝑇 3

+ 𝑝04𝛿𝑇 4 + 𝑝50𝑉 5
𝑎
+

𝑝41𝑉
4
𝑎
𝛿𝑇 + 𝑝32𝑉 3

𝑎
𝛿𝑇

2 + 𝑝23𝑉 2
𝑎
𝛿𝑇

3 + 𝑝14𝑉𝑎𝛿𝑇 4 + 𝑝05𝛿𝑇 5,

where the coefficients are provided in Table 2.

The following values for the covariance matrices are considered:

𝑸 = diag(1 × 10−2, 1 × 10−2, 1 × 10−2),
𝑸𝒃 = diag(9 × 10−6, 4 × 10−6𝑰2, 2.5 × 10−7, 9 × 10−6𝑰3),
𝑹 = diag(7.6 × 10−5𝑰3, 1.0, 1.0 × 10−2𝑰2, 9.9 × 10−5𝑰2, 4.0, 9 × 10−2𝑰3),

where diag(𝑀1,… ,𝑀𝑒) denotes the block diagonal augmentation of

matrices𝑀1,… ,𝑀𝑒. The covariance matrices are initially chosen based

on the expected noise characteristics, which can be typically obtained

from flight test data. Then, these matrices are fine-tuned during filter

design to result in smaller estimation errors.

The threshold values used in the detector are chosen based on

simulations where the sUAS is not subjected to any actuator attack;

however, the sUAS is subjected to the same form of exogenous distur-

bances as given in Section 4.1. Data from these simulations are used in

the estimation-based detector to estimate the unknown actuator attack

input vector. Although the true actuator attack input vector is zero,

the estimate of this vector need not be zero due to the presence of

disturbances. Based on the distributions of the estimation errors thus

obtained, the threshold value for each channel is chosen as 110% of the

maximum absolute value of the estimation error for that channel. This

inflated value compensates for the potentially nonzero estimate of the

attack input vector in attack-free situations. The threshold values are

selected to be symmetric about zero and are given as follows: 0.04ms,
0.045ms, 0.035ms, and 0.035ms for the elevator, aileron, rudder, and
throttle channels, respectively.

Table 3

Performance of the estimation-based detector from simulations and flight tests.

Control channel False positive rate (%)

Simulation case 1 Simulation case 2 Flight tests

Elevator 0.84 13.17 9.12

Aileron 1.38 18.23 13.51

Rudder 1.29 17.96 15.32

Throttle 0.43 7.09 5.56

Fig. 6. A representative simulation comparing the estimated actuator attack input (shown

in blue) with the actual actuator attack input (shown in red). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this

article.)

Fig. 7. A representative flight test segment comparing the estimated actuator attack input

(shown in blue) with the actual actuator attack input (shown in red). (For interpretation

of the references to color in this figure legend, the reader is referred to the web version

of this article.)
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Simulations are performed where the sUAS is subjected to the same

types and intensities of attacks, same paths, and same disturbances as

the ones used in the simulations for the watermarking-based detector.

The duration of the attack signals and the manner in which they are

implemented are also the same as described before. In addition, a fifth

type of attack is considered in this case, a bias injection attack, where

the magnitude of the actuator attack signal remains constant throughout

the attack duration. During the simulations, six different values are

considered for the magnitude of the bias injection attack, namely

−0.3ms, −0.2ms, −0.1ms, 0.1ms, 0.2ms, and 0.3ms. Since the detector
makes use of the aerodynamic model of the sUAS, it is important to

assess the performance of the detector under conditions where the

aerodynamic model contains uncertainties. To this end, two different

simulation cases are considered in this study. In case 1, the aerodynamic
model used in the estimation is the same as the aerodynamic model

used in the simulations. In case 2, the aerodynamic model used in

the estimation is the same as in case 1; however, the aerodynamic
model used in the simulations has uncertainties in the aerodynamic

coefficients. Specifically, the aerodynamic coefficients 𝐶𝑖(𝑘) at time
instant 𝑡𝑘 are replaced by 𝐶𝑖(𝑘) + 𝛿𝐶𝑖(𝑘) for 𝑖 = 𝑥, 𝑦, 𝑧, 𝑙, 𝑚, 𝑛, where

𝛿−
𝐶𝑖

≤ 𝛿𝐶𝑖(𝑘) ≤ 𝛿+
𝐶𝑖
and 𝜈−

𝐶𝑖
≤ 𝛿𝐶𝑖(𝑘 + 1) − 𝛿𝐶𝑖(𝑘) ≤ 𝜈+

𝐶𝑖
. 𝛿𝐶𝑖(𝑘) is a

pseudorandom sequence with specified bounds, where the values of

these bounds are the same as those given in Table III of Palframan, Fry,

and Farhood (2017). As far as the flight test results are concerned, each

combination of attack type and attack intensity is simulated 10 times.
During all the flight tests, the sUAS is tasked to follow the race track

path.

The simulation and flight test results are summarized in Table 3,

where the FPR of the detector for each of the four control channels

is provided. In all the simulations and flight tests, the detector is able

to detect all the actuator attacks, thereby resulting in a TPR of 100%.
However, the false positive rates differ for the flight tests and the

two simulation cases. Not surprisingly, when the aerodynamic model

contains uncertainties (simulation case 2), the FPR is higher for all the
four control channels. The values of the FPR from the flight tests lie in

between the values for simulation case 1 and those for simulation case
2, thereby indicating that the results obtained based on the simulation
environment under case 2 constitute a worst-case evaluation of the

detector’s performance. Figs. 6 and 7 show representative segments from

simulations and flight tests, where a comparison is made between the

output of the TSEKF and the actual unknown actuator attack input.

It was observed from the simulation studies that for all the attacks,

the estimation errors lie within ±0.2ms. The estimation errors for

the struck actuator attack, the scaling attack, and the bias attack are

concentrated within ±0.1ms. As for the sinusoidal actuator attack and
the random actuator attack, the estimation errors are more uniformly

distributed within the interval [−0.2, 0.2]. One of the reasons for the
increased estimation errors for the sinusoidal and random actuator

attacks is found to be the phase lag that exists between the estimated

actuator attack input and the actual attack input.

Merits and shortcomings of the method

The main advantage of the estimation-based detection method is

that it enables estimation of the magnitude of the actuator attack,

which is not possible using the watermarking-based detector. Also, the

estimation-based detector is able to detect different types of actuator

attacks, including the bias injection attack. The estimation-based de-

tector has a lower detection latency compared to the watermarking-

based detector because of the absence of a monitoring interval in the

estimation-based detection. The detection latency for the estimation-

based detector depends on the threshold values: a higher threshold

value, which might result in a lower FPR, could come at the expense

of a higher detection latency.

In order to guarantee lower false positive rates and better estima-

tion performance, the estimation-based detector requires an accurate

model of the sUAS. However, obtaining an exact model of the sUAS

is a formidable task, and invariably any model used will contain

inaccuracies that will impact the performance of the detector. The

estimation-based detector is also computationally more expensive than

the watermarking-based detector, as its implementation requires carry-

ing out operations such as matrix inversion.

5. Resilient hardware approach

The previous two methods discussed in Section 4 do not require

any changes to the servos and are purely algorithmic. Although the

two methods are shown to detect different types of actuator attacks,

a separate mitigation strategy is needed to ensure the safe operation

of the sUAS under actuator attacks. Hence, each of the previous two

methods would serve as one part of a two-pronged strategy, involving

attack detection and then mitigation. The approach proposed in this

section obviates the need for the two-pronged approach and makes the

servo resilient to actuator attacks through hardware modifications.

As explained in Section 2, the typical servos used in an sUAS are

controlled using constant-frequency PWM signals. To design an effective

actuator attack and maximize its impact, the attacker needs to know

about the pulse frequency of the PWM signals, and so the attacker

will initially attempt to determine this frequency. By using a constant-

frequency PWM signal to control the servo, a fixed target is provided

to the attacker, which makes it easier for the attacker to discern the

frequency. The servo can therefore be made resilient to the actuator

attacks by just increasing the randomness in the servo’s operation, which

can be achieved by continuously changing the targeted pulse frequency

pseudorandomly. This strategy is akin to moving target defense, which is

used in network security to secure computer networks against malicious

attacks (Jajodia, Ghosh, Subrahmanian, Swarup, Wang, & Wang, 2012).

The moving target defense forms the core of the resilient hardware

approach. The proposed servo is described in detail in the following

subsection.

Proposed resilient actuator system

The proposed servo will be referred to as the resilient actuator sys-

tem. The resilient actuator system is composed of a microcontroller and

the six components of the servo described in Section 2, namely, the DC

motor, the control horn, the gear reduction system, the potentiometer,

the servo plug, and the built-in microprocessor. The resilient actuator

system does not require modifications to any of the six components

of the servo. The only hardware modification required is the addition

of a microcontroller. Instead of constant-frequency PWM signals, the

resilient actuator system uses variable-frequency PWM signals. The

variable-frequency PWM signals are generated by the autopilot and

decoded by the microcontroller, which then transforms the variable-

frequency PWM signals into constant-frequency PWM signals before

sending them to the built-in microprocessor of the servo. The frequen-

cies of the variable-frequency PWM signal are chosen pseudorandomly

from a set of frequencies denoted by 𝑭 . The elements of 𝑭 are selected

from the interval [𝑓𝑙, 𝑓𝑢], where 𝑓𝑙 ≥ 𝐹𝑠 and 𝑓𝑢 < 500Hz. 𝐹𝑠 is
the sampling frequency of the control signal, and 𝑓𝑢 is limited by the

maximum pulse width of a PWM signal, which is 2ms. Each element
in 𝑭 is assigned a positive integer from the interval [1, |𝑭 |], where|𝑭 | denotes the cardinality of 𝑭 . A pseudorandom number generator

is used to generate pseudorandom binary sequences, and by combining

a sufficient number of bits, a pseudorandom integer sequence is gen-

erated. The Blum–Blum–Shub (BBS) pseudorandom number generator,

also known as the 𝑥2 mod 𝑁 pseudorandom number generator, is used

in the resilient actuator system because of its non-predictability prop-

erty (Blum, Blum, & Shub, 1986). The inputs to the BBS pseudorandom

number generator are 𝑁 and 𝑥0, where 𝑁 = 𝑝𝑞 is a product of two

distinct prime numbers 𝑝 and 𝑞, each of which is congruent to 3 mod 4,
and 𝑥0 is an integer co-prime to 𝑁 . Given 𝑁 and 𝑥0, one can generate

the pseudorandom sequence forward in time; however, due to the non-

predictability property of the BBS pseudorandom number generator, the
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Fig. 8. A representative segment of the control signal along with the corresponding

constant-frequency and variable-frequency PWM signals.

sequence cannot be generated backwards. Since the frequency sequence

cannot be predicted without knowing 𝑥0 and𝑁 , anymalicious adversary

will not be able to inflict significant damage on the sUAS due to an

actuator attack.

During system initialization, the autopilot and the microcontroller

are time-synchronized, and the inputs to the pseudorandom number

generator, 𝑥0 and 𝑁 , are shared between the autopilot and the mi-

crocontroller. Depending on the pseudorandom integer sequence, the

autopilot generates the variable-frequency PWM control signals by

changing the pulse frequency. The microcontroller on the receiving

end generates the same pseudorandom integer sequence, and since the

autopilot and the microcontroller are time-synchronized, the variable-

frequency PWM signals can be decoded by the microcontroller. The

variable-frequency PWM signal is transformed into a constant-frequency

PWM signal by the microcontroller before sending it to the servo’s built-

in microprocessor. Fig. 8 shows a segment of the control signal sent

by the autopilot, along with the corresponding constant-frequency and

variable-frequency PWM signals.

Although the autopilot can demand rapid changes in the control

commands, the actual control commands sent to the control surfaces are

determined by the servo dynamics. The servo acts as a low-pass filter by

attenuating high frequency inputs. This information is used in the re-

silient actuator system to limit the rate of change of actuator commands

even before they are sent to the servo. Based on the characteristics of

the servo used in this work, the maximum rate of change of control

commands is limited to 0.625ms∕s.
The resilient actuator system creates a moving target through the

use of variable-frequency PWM signals. Depending on the type of attack

and the attack signal’s frequency, there could be time instances where

the control signal sent by the autopilot is slightly altered by the actuator

attack even with the resilient actuator system in place. But the intended

effect of the actuator attack would not be achieved unless the attacker

is able to predict the frequency sequence used in the variable-frequency

PWM signal. An appropriately designed robust sUAS controller should

be able to mitigate the effects of such small random changes in the

control commands without any significant performance degradation. A

detailed analysis is presented next to corroborate this point.

Analysis results

A software implementation of the resilient actuator system is imple-

mented in MATLAB, and simulations are performed. Different actuator
attacks are simulated, and the PWM signal read by the microcontroller

is compared with the PWM signal sent by the autopilot. The values of𝑁

and 𝑥0 used in the simulations are 𝑁 = 501826793 and 𝑥0 = 351278754,

Fig. 9. A representative MATLAB simulation of the resilient actuator system under struck

actuator attacks; the control signals sent by the autopilot are shown in blue, the control

signals read by the servos are shown in red, and the control signals that would have been

read by the servos in the absence of variable-frequency PWM signals are shown in black.

(For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Fig. 10. Histograms of the differences between the control signals sent by the autopilot

and the control signals read by the microcontroller.

and the set 𝑭 is given by 𝑭 = {𝐹1, 𝐹2,… , 𝐹15}, where 𝐹𝑖 = 103∕(2𝑖 + 3)
for 𝑖 = 1,… , 15, with the frequencies 𝐹𝑖 given in Hertz. In the absence
of actuator attacks, the PWM signal decoded by the microcontroller

will be the same as the PWM signal sent by the autopilot. Since the

resilient actuator system is independent of the sUAS platform, only the

race track path is used in all the simulations. The five different types of

actuator attacks described in the previous sections are also considered

here. As before, the duration of each of the attack signals is 4 s, and
each combination of attack type and attack intensity is applied 1000
times. In the previous simulations, it was sufficient to simulate the

intended effect of the attack, that is, the PWM values corresponding to

the control commands were simply altered to reflect the intended effect

of the attack. However, the simulations in this case are supposed to

demonstrate the efficacy of the resilient actuator system in weeding out

the intrusive PWM signals through the frequency-hopping mechanism.

To do so, the exact implementation of the attack must be simulated.

198



D. Muniraj and M. Farhood Control Engineering Practice 83 (2019) 188–202

Fig. 11. Upper bounds on the robust -to-𝓁2-gains obtained from IQC analysis; the red

curve corresponds to the case where 𝑑𝛿𝑖 are incorporated in the analysis; the blue curve

corresponds to the case where 𝑑𝛿𝑖 are not accounted for in the analysis. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version

of this article.)

The attack mechanism described in Section 2.2 is used to imple-

ment the actuator attacks, as outlined next. First, the attack signal is

transformed into a trailing-edge modulated PWM signal with a pulse

frequency of 50Hz, which is the most common frequency used for PWM
signals. Suppose that the rising and falling edges of the PWM attack

signal are denoted by 𝑡𝑎
𝑟
(𝑗) and 𝑡𝑎

𝑓
(𝑗), respectively, for positive integers

𝑗, and that the rising and falling edges of the PWM control signal sent by

the autopilot are denoted by 𝑡𝑟(𝑗) and 𝑡𝑓 (𝑗), respectively. The pulse width
of the 𝑗th pulse of the PWM attack signal is then given by (𝑡𝑎

𝑓
(𝑗)−𝑡𝑎

𝑟
(𝑗)) ms.

If there is no actuator attack, the 𝑗th pulse of the PWM control signal has

a pulse width of (𝑡𝑓 (𝑗) − 𝑡𝑟(𝑗)) ms. In the presence of an actuator attack,
the 𝑗th pulse of the PWM control signal has a pulse width equal to

min

(
(𝑡𝑓 (𝑗) − 𝑡𝑟(𝑗)),max

(
(𝑡𝑎
𝑓
(𝑗) − 𝑡𝑟(𝑗)), 1.1

))
ms

if 𝑡𝑎
𝑓
(𝑗) lies within the time interval of the attack, where the value 1.1

in the previous expression is the minimum pulse width of the PWM

signal recognizable by the servo. If 𝑡𝑎
𝑓
(𝑗) is outside the time interval

of an attack, then the 𝑗th pulse of the PWM control signal has a pulse

width of (𝑡𝑓 (𝑗)− 𝑡𝑟(𝑗)) ms. Thus, the attacker can only decrease the PWM
value of the control signal.

Fig. 9 shows a representative simulation, where struck actuator

attacks are simulated in each of the four control channels. Specifically,

struck actuator attacks with magnitudes of 1.1ms, 1.2ms, 1.3ms, and
1.25ms are applied in the elevator, aileron, rudder, and throttle chan-
nels, respectively. The duration of each of the attack signals is 4 s. It
is observed from the figure that the resilient actuator system is able to

mitigate the actuator attacks in each of the four channels and that the

difference in the PWM values between the control signal sent by the

autopilot and the control signal read by the microcontroller is small.

For all the four channels, the absolute value of the maximum difference

between the two signals in this particular case is less than 0.07ms. The
metric used to assess the performance of the resilient actuator system

during the simulations is the difference between the control signal sent

by the autopilot and the control signal read by the microcontroller,

which for a channel 𝑖 at time 𝑡 is denoted by 𝑑𝛿𝑖(𝑡), where 𝑖 = 𝐸, 𝐴, 𝑅, 𝑇
corresponding to the elevator, aileron, rudder, and throttle channels,

respectively. The sign convention for 𝑑𝛿(⋅)(⋅) is as follows: if the PWM
value of the control signal sent by the autopilot is greater than the PWM

value of the control signal read by the microcontroller, then 𝑑𝛿(⋅)(⋅) is

positive. Since the attack mechanism is such that the attacker can only

reduce the PWM value of the control signal, 𝑑𝛿(⋅)(⋅) ≥ 0 during the
time interval of an attack. If an actuator attack is applied to channel

𝑖 and the resilient actuator system is able to completely mitigate this

attack, then 𝑑𝛿𝑖(𝑡)≡0 during the time interval of the attack. For each
of the four channels, the values of 𝑑𝛿𝑖(𝑡) are computed from all the

simulations. Fig. 10 shows the distributions of 𝑑𝛿𝑖 for 𝑖 = 𝐸, 𝐴, 𝑅, 𝑇 .

Firstly, it is observed from the figure that 𝑑𝛿𝑖 is negative in some

cases. The reason for the occurrence of the negative values of 𝑑𝛿𝑖 is

that the control commands demanded by the autopilot in certain cases

are rate-limited by the resilient actuator system. Secondly, as expected,

the resilient actuator system does not completely mitigate the actuator

attacks; however, the differences between the control signal PWMvalues

sent by the autopilot and the PWM values read by the microcontroller

are small and lie within ±0.1ms. Depending on the attacker’s frequency
and the type of attack, the control commands may be randomly altered

by a small value due to the actuator attack. A properly designed sUAS

controller should be able to mitigate the effects of 𝑑𝛿𝑖. In the next

paragraph, tools from robust control theory are used to show that the

effects of 𝑑𝛿𝑖 on the performance of the sUAS are not significant. While

it is possible for the attacker to employ variable-frequency PWM signals

instead of constant-frequency PWM signals as assumed in this study, it is

unlikely for this scenario to happen in actual operations because of the

limited energy available to the attacker. To induce variable-frequency

voltage signals using the attack mechanism described in Section 2.2,

a larger bandwidth and hence more energy are required. Nevertheless,

preliminary results show that the variable-frequency PWM attack signals

are actually less effective against the resilient actuator system than the

constant-frequency ones.

Integral quadratic constraint (IQC) theory provides a rigorous ap-

proach to systematically examine the robust stability and performance

of controlled systems (Megretski & Rantzer, 1997). The IQC analysis

approach uses linear fractional transformations (LFTs) on uncertainties

to express systems and can handle a wide range of uncertainties, includ-

ing static and dynamic, time-invariant and time-varying perturbations,

sector-bounded nonlinearities, and time-varying delays. In IQC analysis,

the uncertain plant and the controller are modeled as an upper LFT

of a causal, stable nominal system, denoted by 𝑴 , and a perturbation

operator, denoted by 𝛥∈𝜟. This LFT (𝑴 , 𝛥) maps the disturbance input
𝒘 ∈  ⊆ 𝓁2 to the performance output 𝒛̄, where 𝓁2 denotes the normed
space of square summable vector-valued sequences. (𝑴 , 𝛥) is said to
have a robust-to-𝓁2-gain performance level of 𝛾 if it is robustly stable
and ‖(𝑴 , 𝛥)‖→𝓁2

< 𝛾 for all 𝛥∈𝜟. Recently, a mathematical tool for IQC
analysis of fixed-wing UAS controllers has been developed (Palframan

et al., 2017), where unmodeled dynamics, nonlinearities, aerodynamic

uncertainties, delays, and actuator saturation are characterized using

different IQC multipliers. This tool will be utilized in this work to

assess analytically the effect of the attack-induced control errors 𝑑𝛿𝑖 on

the worst-case performance of the sUAS ∞ path-following controller.

For space considerations, the following demonstrates only how the

attack-induced control errors are incorporated into the uncertain UAS

framework. The reader is referred to Palframan et al. (2017) for the

specifics of the framework, including the various uncertainties used

to characterize the uncertain operational environment of UAS flight

controllers. Each 𝑑𝛿𝑖, for 𝑖 = 𝐸, 𝐴, 𝑅, 𝑇 , is modeled as an exogenous

input signal, which has a constant power spectral density within the

frequency range [−𝜔0, 𝜔0]. From the simulation results, the power

spectral density of each 𝑑𝛿𝑖 is computed, and it is found that, for all

the input channels, most of the energy of the control error signal is

concentrated within the frequency band [−0.32𝜋, 0.32𝜋]. Therefore,𝜔0 is

set equal to 0.32𝜋. The performance output is chosen as 𝒛̄ = [𝑋̄, 𝑌 , 𝐻̄]𝑇 ,
where 𝑋̄, 𝑌 , and 𝐻̄ denote the position errors of the sUAS with respect

to the desired position on the reference path; see Muniraj et al. (2017).

Fig. 11 shows the upper bounds on the robust-to-𝓁2-gain performance
level of the uncertain LFT system (𝑴 , 𝜖𝛥) for different values of the
uncertainty scale factor 𝜖, as obtained from IQC analysis. For the sake of
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Fig. 12. Distributions of the-to-𝓁2-gains from simulations and flight tests; the red bars correspond to the case where 𝑑𝛿𝑖 are incorporated; the blue bars correspond to the case where

𝑑𝛿𝑖 are not included. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. A prototype of the resilient actuator system.

comparison, IQC analysis results are also shown for the case where the

exogenous signals that model 𝑑𝛿𝑖 are not included in the analysis. The

maximum degradation in 𝛾 due to the effect of 𝑑𝛿𝑖 is 17% and occurs

when the scaling factor 𝜖 = 1.
Since IQC analysis provides only an upper bound on the -to-𝓁2-

gain performance level, the percentage degradation in 𝛾 of 17% due to

𝑑𝛿𝑖 might be a conservative estimate. Thus, in addition to IQC analysis,

nonlinear simulations and flight tests are conducted, where exogenous

inputs are added to each of the four control channels. In the simulations

and flight tests, the sUAS is controlled by the ∞ path-following

controller and is tasked to follow the race track path. The exogenous

inputs are pseudorandomly generated from a uniform distribution over

the interval [−𝜔0, 𝜔0]. The-to-𝓁2-gain is computed for each loop using
information about the wind disturbances, sensor noise, attack-induced

control errors, and position errors. The distributions of the -to-𝓁2-
gains thus computed from simulations and flight tests are shown in

Fig. 12. The results presented correspond to 1800 cycles of the reference
path for the simulations and 21 cycles of the reference path for the

flight tests. The figure shows histograms for both the case where 𝑑𝛿𝑖 are

incorporated and the case where 𝑑𝛿𝑖 are not included. The percentage

degradation in the maximum value of 𝛾 due to the effect of 𝑑𝛿𝑖 is 5%
from the simulations and 9% from the flight tests, both of which are less

than the value predicted from IQC analysis. Thus, our analysis indicates

that actuator attacks do not have a significant effect on the control

performance of sUAS equipped with the resilient actuator system.

Fig. 14. Results from a representative test using the prototype resilient actuator system;

the blue curve represents the control signal sent by the autopilot, the black curve indicates

the attacked control signal, and the red curve indicates the control signal read by the servo.

(For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Table 4

Comparison of the three methods.

Watermarking-based

detector

Estimation-based

detector

Resilient actuator

system

System model Not needed Needed Not needed

Computational

overhead

Low High Low

Hardware

modification

Not needed Not needed Neededa

Attack mitigation Not includedb Not includedb Included

Detection latency Variesc Low Not applicable (no

separate detection)

aRequires an additional microcontroller.
bRequires a separate mitigation strategy.
cDepends on the monitoring interval (trade-off between detection performance and

detection latency).

A prototype of the resilient actuator system that uses variable-

frequency PWM signals is shown in Fig. 13. The objective of building

the prototype is to demonstrate the proof-of-concept of the proposed

resilient actuator system. The prototype consists of two Sparkfun Red-

Boards representing the autopilot and the microcontroller, a servo, a

200



D. Muniraj and M. Farhood Control Engineering Practice 83 (2019) 188–202

5V power supply, and connecting wires. The two RedBoards are pro-

grammed using the Arduino IDE, and they communicate with each other

through pulse-width modulated signals. For the sake of demonstration,

the RedBoard representing the autopilot is programmed to simulate

different types of actuator attacks, and the control signals read by the

RedBoard representing the microcontroller are recorded. Fig. 14 shows

a representative test where a sinusoidal actuator attack of amplitude

0.2ms and frequency 2Hz is simulated. It is observed from the figure

that the prototype resilient actuator system is able to mitigate the effects

of the actuator attack.

Merits and shortcomings of the approach

The main advantage of the resilient hardware approach is that it

does not require a separate mitigation strategy, as the approach ensures

resilience against actuator attacks by design. The resilient hardware

approach only requires an additional microcontroller to interpret the

variable-frequency PWM signals and hence is easy to implement on

servos currently used in sUAS. A minor shortcoming of the method is

that the actuator attacks are not completely mitigated since there is a

marginal difference between the control signals applied to the servos

and the control signals sent by the autopilot during an actuator attack.

However, the discrepancies between the two control signals do not have

a significant effect on the performance of the sUAS, as evidenced from

IQC analysis, nonlinear simulations, and flight tests.

6. Conclusions and future work

This work presented three different methods to address the prob-

lem of detection and mitigation of actuator attacks on sUAS. The

watermarking-based detector and the estimation-based detector make

use of the knowledge about the sUAS to detect actuator attacks. While

the watermarking-based detector only detects the existence of an actua-

tor attack, the estimation-based detector can also estimate the unknown

actuator attack inputs. The resilient hardware approach explicitly ad-

dresses the security vulnerabilities of the servos through a hardware

modification. Since the resilient hardware approach by design ensures

the safe operation of sUAS under actuator attacks, it does not require a

separate mitigation strategy like the other two methods. All of the three

methods are evaluated using extensive nonlinear simulations in MATLAB
and flight tests on a fixed-wing sUAS. Themerits and shortcomings of the

methods are also discussed from the standpoint of implementation on an

actual sUAS. Table 4 gives a comparison of the important characteristics

of the three methods. To the best of the authors’ knowledge, this is the

first work that investigates the problem of detection and mitigation of

actuator attacks for sUAS.

Some possible areas of future work include building compact aug-

mented servos with appropriately programmed microcontrollers and

conducting flight tests. Another area of future work is to subject the

sUAS to real actuator attacks in flight tests, such as the ones described

in Selvaraj et al. (2018), and evaluate the effectiveness of the methods.
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